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Summary

We consider the occurrence of cleft palates (a congenital
malformation) in alive-born babies in Lower Silesia. The recorded data is
stored in two tables: K = {kij} and N = {Nij)' Eul 8. 227, J=1,2,...,10,

with kij denoting the reported number of cleft palates in the i-th county
during the j-th year, Nﬁj denoting the number of alive-born babies in the

i-th county and j-th year. We build a mathematical model for the random
variable X}J denoting the number of cleft palates. Using the likelihood

ratio principle we derive some Statistical tests for the hypotheses that
the probability of the occurrence of a cleft palate is the same in all
counties and/or years. Carrying out these tests we obtain some indications
that the counties of Lower Silesia might be nonhomogeneous with regard to
the considered probabilities. Next we transform the pair K, N to probits @

{Qij} and apply some multivariate techniques (chi2-plot, principal

components) allowing to visualize the mutual similarities and
dissimilarities between counties.

1. INTRODUCTION

In epidemiological investigations it is important to find out, (1)
whether the occurrence of a particular disease is connected with the area
inhabited by the patient. Such connection would mean that in this area
some factors increasing the probability of occurrence of this disease may
be hidden. Another important question in epidemiology is, (2) whether the
probability of the occurrence of a disease is constant over time (years).

The aim of this Paper is to answer both these questions with regard
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to a particular disease: the occurrence of cleft palates (a congenital
malformation) in alive-born babies in 17 counties of Lower Silesia in the
period 1961-19870.

Formally, from the statistical point of view, we deal here with
counts of a rare event, which can be put together in the layout of a two-
way contingency table, the one entry denoting the county and the other the
year of birth of the baby. The count of each cell of this contingency
table must be referred to the number of alive-born babies in the
respective county during the respective year. Therefore the problem cannot
be treated with classical methods of multiway contingency tables. Our task
was to introduce a statistical model describing the probability of the
occurrence of a cleft palate in a baby born in a given county in the given
year and next to formulate two epidemiological questions mentioned above
(as (1) and (2)), in terms of statistical hypotheses which can be dealt
with in a known formal way.

We added to our formal statistical analysis some explorative analysis
allowing to visualize graphically a nonhomogeneity among the considered
units. The explorative analysis, although based on known statistical
methods, seems to be quite new in the context of the considered problems.

2. THE DATA AND THE GENERAL MATHEMATICAL MODEL

A cleft palate is a rare congenital malformation. World statistics
report 80-210 cleft palates among 100 000 alive born babies. A cleft
palate is a very serious congenital malformation and has to be treated
surgically.

We consider cleft palates observed in babies born alive in Lower
Silesia in 27 counties (small administrative areas) in the years 1962-
1970. Our primary data consists of records of kij’ the number of cleft
palates observed in the i-th county (i = 1,2,...,27) and Jj=th year
(j =1,2,...,10), and Nij’ the number of babies born in the i-th county
and j-th year. The values of kiJ are small: from 0 (no baby with cleft
palates) to 8 (the maximum of cleft palates reported during one year in
one county). The numbers NiJ of babies born during one year vary from 547
to 5252. Now let us introduce the mathematical model.

Let us suppose that we have N babies with the same exposure to cleft
palates. Let p (0<p<l) be the probability that the new-born baby has a
cleft palate. We assume that this probability is the same for all babies.
Further we assume that the occurrence of a cleft palate in one baby is
independent of the occurrence of this malformation in another baby. In
these circumstances we can imagine the occurrence or non-occurrence of a
cleft palate in N babies as a series of N independent trials. For each
trial the considered event (a cleft palate) can occur with the same
probability p. Then X, the number of cleft palates observed in this series



of N trials, is a random variable which can take values 0,152,008N. The
probability Pr that the value of X equals k (0OsksN), is given by the
binomial distribution:

pr(xek) = [o*(-p™* (1)

The expected value of X is Np (see, e.g. Feller (1950)).

It is well known, see e.g. Feller (1950), that in the case when the
expected number of events is small, the binomial distribution (1) can be
approximated by a Poisson distribution given by the formula:

K
Pr(x=k) = (NR)_ -Np

¥ » _k=0,%,3,.,. (2,

Because our data are stratified into t counties and 1 years, we
consider a set of random variables xij, each having the distribution

K
(NPt V)R yalam,
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=k
kiJ

Pr(xi

i kiy)

In the model given by (3) we assume that the probability of the
occurrence of a cleft palate in one baby born in the i-th county during

the j-th year is pij' We assume that the probabilities PiJ can be
different in various counties and years.
A maximum likelihood estimator for piJ is
Pyp = kijlnij ’ imdl,eooity J=1,...,1. (5)

Our task is to verify whether the pij’a are significantly different
for various counties and years. We shall perform this task in the next
chapter using likelihood ratio tests.

3. LIKELIHOOD RATIO TESTS

Let us assume the Poisson model given by (3). Generally we are
interested in 3 hypotheses:

HA: plj = pZJ B o B ptj = p.j' BP0 25 ainceind » (5a)
HB: Py = Pjg = ceo = Piy = Pj s 2], 80 ceeyty (5b)
Haop? P13 = Py = ev =03 = p . (e)

Assuming HA we state that the probabilities of the occurrence of
cleft palates may differ for various years, none the less, having the year
J fixed, they are the same for all counties.

Assuming HB we state that for a given county i the probabilities
pij' Jj=1,2,...,1, are the same during the whole considered period.



Assuming HAB we state that during the whole period the probabilities
pij are the same in all counties.

To test the hypotheses HA, HB and HAB we use test statistics derived
from the likelihood ratio principle presented e.g. in Mood and Graybill
(1973). The formulae for the respective test statistics are:

for testing HA

t 1 N - - -
2
x2 =23 I [kln(py/py ) = Nyg(py 5= »y )] (6a)

i=1j=1

with t(1-1) degrees of freedom,
for testing "B

t 1 - - - -
2
Xp = zi}.:ugl[k“ In(p; 5/, 5)= Nyj(py5- P.5)) (6b)

with 1(t-1) degrees of freedom,
for testing HAB

; et - - > r
2
Xyp = 21§13§1[k1J ln(pij/p,_)— Nij(Pij' p. )] (6c)

with tl-1 degrees of freedom.
The maximum likelihood estimators for P;. and p_‘i are respectively:

Py L~ kNG k,J/N,j . (7)
Under HA, H? and EAB the test statistics xi, X: and Xin have

asymptotically a x° distribution with t(1-1), 1(t-1) and tl-1 degrees of
freedom, respectively.
The values of the test statistics for our data are given in Table 1.

In this table xzalc stands for the calculated value of the appropriate

test statistic X:, X: or x:B.

None of hypotheses HA’ HB, HAB can be rejected when using the test
statistics xz, Xg or Xin. This means that using these statistics we can
not prove any significant differences in the probabilities describing the
occurrence of a cleft palate in the considered counties and/or years.

Still we can apply here another procedure. Assuming that HB is true
we can build a model with probabilities Py P2-""'pt- only. In this
model we test the hypothesis

HA/B : Py, = Py = .ee Py 7 (8)
: 2
The test statistic for HA/B is xA/B , given by the formula

t %29l g
iy
Xx/B = zigl[ki'(ln By, (Roihsn Nor(Bgaa p..)] ’ (9)

with t-1 degrees of freedom.



Table 1. Values of test statistics derived from the 1likelihood ratio

principle
Hypothesis and its meaning 5o ar  p=p(x®>x® _ m)
calc calc/ o
HA: equality of pij'n 245.5 243 0.44
in columns (counties)
HB: equality of pij" 275.7 260 0.24
in rows (successive years)
HAB: equality of all pij's (over 284.0 269 0.25
counties and years)
HA/B: conditional equality of the 38.5 26 0.05
P; J'a

For our data the calculated value of the test statisgtic Xi/Bequals
x:.lc = 38.5 with df = 26 degrees of freedom. Under HA/B , the
probability of obtaining equal or larger value of Xi,n equals 0.0540, so
it is on the border of statistical significance. At this moment we are in
doubt whether HA/B is true. We should seek other indication on this
topic.

We shall do it in next chapters of this Paper using some graphical
methods.

4. TRANSFORMATION TO PROBITS

Let us assume that all the pij'a are equal:

Ho 3 pij T A S s JE R8s 0eyde (10)
The distribution of the random variable xij is given now by:
k;
(Ni.p_‘) ) —Nin'_
Pr(X; = k; ) = —— . (11)
1)
For observed values kll'klz""’ktl the likelihood function L can be
expressed as
K. .
t 1 (N.:p--) Y N _p
- " = A e 1
b= Lkyy kygegeoikeggiop;,) = N0 e ’
i=1j=1 ij
where from we obtain
ook
k; .
2 i§1’§1 ij k
i g = T (12)
L IN
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as the estimator for p . For our data, p,, = 0.001024.
Assuming the Poisson model given by (11) and substituting p with

p,, = 0.001024 we can for any given values kiJ and Nij calculate the

probability Pr(kij) that xij does not exceed the observed value kiJ' This
probability is given by the formula
kij
Prik;;) = Pr(X;; s k; ,/H ) = n§o Pr(X;; =h) . (13)

For the calculated value Pr(kij) we find appropriate quantile of the
Gauss-Laplace distribution:

=
Q = ¢ (Pr(ky ) (14)

where

4 2
¢(z) = I == P /2dt
T

The values of QiJ' i=1,2,...,t, j=1,2,...,1, are given in Table
2. They are called probits. Being quantiles of the standardized normal
distribution, they practically take values from the interval (-3.0, +3.0)
and are comparable each other. Moreover, they are suitable for handling
with various multivariate techniques.

In the next two chapters we shall carry out an explorative analysis
of the data which constitute the array Q = {Qij}. Our goal will be to find
out whether the counties, which correspond to the rows of the table Q, are
Homogeneous.

5. INVESTIGATIONS ON THE HOMOGENEITY OF COUNTIES BY DRAWING A CHIZ2-PLOT

The array Q = (Qij) comprising the probits Qij computed by formula
(14) may be viewed as a set of t points situated in a l-dimensional
Euclidean space Rl. For our data t = 27 (the number of counties) and
1 = 10 (the number of years). The center of gravity of these t points has
the coordinates

a=(Q,,, 8,0 (15)
where

t
6-3 = (rQ ./t ’ b R s &

i=

Now for each point (which corresponds to one row of the array Q) we

calculate its Mahalanobis distance from the center of gravity q. In this
way we obtain the Mahalanobis distances:

b?, ng,....nz - (16)
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Under Ho given ?{ (10) and under normality of the QiJ’s each Dg is
distributed as a ¥” variate with 1-1 degrees of freedom.

Using the techhique of probability plots we construct a chi2-plot
which is shown in Fig.l. For an eiplanation of the method of constructing
a probability plot see e.g. Bury (1975). The method of constructing a
chi2-plot is explained e.g. in Gnanadesikan and Kettenring (1972) and
Bartkowiak et al. (1988). For homogeneous data following a given

distribution we should obtain a plot consisting of points located along a
straight line.

chi 2-quantile 0
21.000
x 14
x 26
15.000 x N
x 22
2
x 21
xx9
il B 7
x
9000 o
x
%
w0l
xx
xX
x
3000 | *

3000 7000 M000 15000 19000 |
Fig. 1. Chi2-plot with Mahalanobis distances.

Looking at Fig.l we can state that generally the points are not
situated along a line. The linearity is exhibited for smaller values of
Di. Next we see a bend (up from the county no 17 till no 26). The county
no 14 appears as an isolated point. We conclude that the considered array
Q comprises some nonhomogeneous rows.

The points nos. 26, 11, 22, 2, 21, 9, 17 look distinct. They seem to
be situated along another straight line. The point no 14 is clearly
isolated from the rest of the points. We could therefore conclude that our
data is a mixture of two normal distributions and one point (no 14)
which can be suspected to be an outlier. Looking at the marginal probits
we state that point no 14, representing the county Nowa Ruda, has the
largest marginal probit (= 1.3560) indicating that the observed frequency
of cleft palates is here the highest. The marginal probits for the



13

counties nos. 26, 11, 22, 2, 21, 9, 17 are 0.77, 0.90, -0.42, 1.09, 0.58,
0.71; they do not differ from marginal probits for other counties.

To obtain an insight into the mutual position of the counties
identified with points in Rlo we shall consider scatterdiagrams of the
first two and principal components.

6. GRAPHICAL PRESENTATION OF COUNTIES USING PRINCIPAL COMPONENTS

Let us consider the array Q = (Qij)' 1 ® 15eeva2T; Jom X5y 10
Each row q; = (Qil, 012,...,Qi1°) of Q islziewed as an individual point
in the 10-dimensional Euclidean space R . So the 27 counties are
represented as a cluster of points-individuals in this space. In the
following we apply the principal component technique as described in
Morrison (1967) or Jolliffe (1985).

The idea of principal components is to approximate points in RP (in
our data p = 10) by their projections onto a subspace of a lower
dimension. Let S = (’ij)' i,j = 1,...,10 be the cross product matrix
calculated from the array Q. The matrix S can be reproduced by its
eigenvalues 11,12,...,l10 and the eigenvectors el,cz,....clo
corresponding to these eigenvalues; that is,

o,
S = A e e » (17)
he1 h™h™h

provided that (cl,...,clo)T(el,....elo) = I10 (what means that the
eigenvectors °1""'°1o are ortonormalized).

For each r (1<r<10) the best approximation (in the L2 norm) of the
matrix S may be obtained by the first r eigenvalues and eigenvectors of
this matrix:

(r) _ & T
s = h§llhehch (18)

Similarly, for each r the best approximation (in the L2 norm) of the

array Q = {Qij) by r new coordinates may be obtained when using new
coordinates Vi1 yiz""’yir defined as

Ti1 T 93%10 Tz = U4Sp0-..0¥;, = qje, (19)
with q; being the i-th row of the array Q. Denoting the old coordinates
by X '= (xl.xz,...,xlo), the new coordinates by '(r) = (YI,YZ....,Yr) and
the matrix of the first r eigenvectors by C(r)= (cl,cz,...,cr), we can

rewrite (19) as

¥t o xelr) (20)

For r=10 we have Y(lo) = Xc(lo), or simply Y = XC.

Now suppose that the true rank of the matrix S is h, 1<h<10, what
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means that the cluster of points-individuals in Rlo

is h-dimensional, and
among the columns of the array Q there are only h linearly independent
columns. In this situation the matrix S can be approximated by s(h) and
the variables Y by Y(h). the remaining 10-h coordinates being zero.

In practice we seldom know what is the true dimension of the
considered cluster of points. Inspecting S(h) and C(h) for h =1,2,...,p
we can make some inference about the approximation based on the first h
eigenvalues and eigenvectors. Izenman (1980) proposes two characteristics
AS and AC defined as

~(h)
(h) _Mc_ - Clil
AC = el ’ (21)

(h) _
ast®) L AE_ ol (22)

with IlAl being the norm of the matrix A.

In our consideration we assumed that llAlll is the classical Euclidean

10 10
norm: Al = (l:r(AAT))I/2 = ( 2 2 ‘2 )1/2. Then (21) and (22) reduce to:
iy 1
ac® - (1-n/10)1/2 (23)
10 10
as'®) - {[ % 1t ]/[ R ]}1/2 : (24)
j=h+1 9 j=1 9

Plotting AS(h) against Ac(h) for h =0,1,...,10 we obtain a rank
trace plot which is shown in Fig.2. We see that, generally, As(h)
decreases faster than Ac(h) does. This means that As(h) stabilizes faster
than Ac(h). According to Izenman’'s proposal, we can assess the rank of the
approximation of § by S(h) by the smallest integer value between 1 and p
at which an "elbow" can be detected in the PC rank plot. Looking at Fig. 2
we do not see any clear "elbow". We guess that a kind of "elbow" appears
for h=3 or h=6.

Other practical rule to determihe how many principal components
should be included into the model is a thumb rule called also Kaiser'’s
rule (see, e.g. Jolliffe (1985)). This rule was constructed specially for
use with correlation matrices, although it can be adapted for covariance
matrices. The idea behind this rule is that if all columns of the array Q
are independent, than the principal components are the same as the
original variables and all have unit variances in the case of a
correlation matrix. The variances of the subsequent principal components
equal to subsequent eigenvalues ll' 12,....hp. In these circumstances any
principal component with variance less than one contains less information
than any of the original variables and so is not worth retaining. Taking
into account the sampling variability a practical advise is to retain
principal components corresponding to eigenvalues larger than 1* = 0.7.
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Fig. 2. Rank trace plot.

This rule can be adapted for principal components calculated from a
covariance matrix. In this case the cut-off point is 1‘ = 0.7 I, where 1
is the mean of all eigenvalues calculated from the covariance matrix
(Jolliffe, 1985).

The eigenvalues of the correlation matrix and of the covariance
matrix for our data are given in Table 3.

F
Table 3. Eigenvalues li and fractions fi of exhaustion of tr(S) by J, lh

h=1
No i 1 2 3 4 5 6 7 8 9 10
a) from the correlation matrix
li 2.22 1.52 1.44 1.06 1.03 0.87 0.61 0.50 0.45 0.30
£, 0.22 0.37 0.52 0.62 0.73 0.81 0.87 0.92 0.97 1.00
b) from the covariance matrix
li 1.83 0.94 0.84 0.69 0.63 0.56 0.43 0.29 0.26 0.22

fi 0.27 0.41 0.54 0.64 0.74 0.82 0.89 0.93 0.97 1.00




From (17) it follows that

10
tr(S) = Y A, - (25)
h=1
Defining fi as
i: )/(lg: ) (26)
; A ’
1. ey 27y

we obtain f. as an index characterizing the exhaustion of tr(S) by the
diagonal of S 1). The values fi for i=1,2,...,10 may be also found in
Table 3.

The thumb rule points out that in both cases 6 principal components
.hoqld be retained. It follows that our data have a more complicated
structure and can not be modelled by one factor (one principal component).
The first two eigenvalues account only for about 40% of the trace of S.
The first six eigenvalues account for about 80% of the trace of S.

In Fig.3, Fig.4 and Fig.5 we present the points-counties in the
coordinate system ‘Y1'Yz)' (YA'YS) and (YQ'YiO)' The principal
components were calculated from the correlation matrix R.

The presentation of points-individuals in the coordinate system
derived from the first two eigenvectors is quite common. We obtain in this
way a visualization of the mutual positions of the considered points in
Rlo. In our case the first two eigenvalues explain g fraction equal to
0.37 of the trace of R. This is not much and therefore some relevant

UNIT ON THE X -AXIS =0.189 UNIT ON THE Y -AXIS=0.279
1.9 .Y2 17 x x
y x
. x
1 x22
3 x . x
05 x x
% x x
x x x
x
- v x x x
-0.9 . %2 x
; x
. x14 x x9
-23 5
1) : x21 Y1
-3.8 . -0.0 . 3.8
-1.9 1.9

Fig. 3. Scatterdiagram of counties in the coordinate system of the first
two principal components.
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Fig. 4. Scatterdiagram of counties in the coordinate system of the
and 5-th principal component.
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Fig. 5. Scatterdiagram of counties in the coordinate system of the

two principal components.

last



18

information concerning the mutual position of points might be obtained
when considering planes spanned on eigenvectors corresponding to other
eigenvalues, especially the eigenvalues 13, 14, 15.

Looking at Fig.3 one can see the outstanding position of the points
no 21, no 22 and, possibly, no 2. These were already found as
nonhomogeneous with other counties, when considering the chi2-plot given
in Fig.l. Also the points 17, 11, 9 notified in Fig.l are situated at
extreme positions. No 22 is Walbrzych, the county with the smallest
occurrences of cleft palates (see Table 2). The other mentioned points
correspond to larger values of probits and represent counties with
relative large numbers of cleft palates.

Fig.3 does not reveal all counties with relative large occurrences of
cleft palates. Especially county no 14, shown in the chi2-plot as an
isolated point, does not have in Fig.3 any specially outstanding position.

Looking in the array comprising the new coordinates yij'
i=1,...,27, j=1,2,...,10 (not presented in this paper) we find that much
information about county no 14 is comprised in the coordinates Yia Yis*
Therefore we made the plot of points-individuals in the plane (Y4,Y1)
spanned by the eigenvectors corresponding to 14 and 15. It is presented
in Fig.4.

Looking at Fig.4 one can see the outstanding positions of points no
14 and no 26. The last county was not found as outlier in Fig.3. From
Table 2 we can see that it has a considerably large marginal probit.

We made also a plot of the points-individuals in the plane spanned by
the last two eigenvectors. It is shown in Fig.5. This plane is believed
(see e.g. Gnanadesikan and Kettenring (1972) or Jolliffe (1985)) to
reflect random errors or unusual patterns (gross errors) of the data.
Looking at Fig.5 one can state that, except perhaps the point no 16, the
points are scattered quite randomly. Looking in Table 2 for the probits of
the county no 16 we state that it has really an unusual pattern: in the
years 1961-1967 the probits are of rather medium size but in the years
1968 and 1970 they show a sudden rise.

7. CONCLUSIONS

We considered the occurrence of cleft palates in 27 counties of Lower
Silesia. A conditional likelihood ratio test gave some evidence on the
existence of some nonhomogeneity with regard to the occurrence of the
considered malformation in various counties.

We transformed our data to probits and subjected it to some
explorative data analysis using chi2-plots and principal components. This
analysis confirmed our suspicions on the nonhomogeneity of counties. We
found one county (no 14, Nowa Ruda) with relatively high occurrences of

cleft palates. This county is an industrial area. Another county (no 22,
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Watbrzych, a mining area) has relatively small occurrences of the
considered malformations. This county has mineral water spring with
therapeutic properties.

The two applied methods: chi2-plots and scatterdiagrams of principal
components are complementing each other. The former generally indicates
whether any nonhomogeneous units can be found in our data. The latter
gives more detailed information on their mutual positions. Both methods
proved to be useful in visualizing nonhomogeneous units in the considered
data.

Another explorative method allowing for a more comprehensive
visualization of formerly identified outliers will be presented in a
separate paper by Bartkowiak (1989).
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BADANIA STATYSTYCZNE NAD WYSTEPOWANIEM ROZSZCZEPOW PODNIEBIENIA
U NOWORODKOW

Streszczenie

Rozpatrujemy wystepowanie rozszczepédw podniebienia u Zywo urodzonych
noworodkéw w 27 powiatach Dolnego Slaska w latach 1961-1970. Pokazujemy
testy na weryfikowanie hipotesz, Ze prawdopodobielfistwo wystgpienia
rogszczepu Jjest takie samo a) w powiatach, b) w kolejnych latach. Z
przeprowadzonej analizy wynika, Ze rozwazane powiaty moga byd
niejednorodne ze wzgledu na prawdopodobiefstwo wyst3gpienia rozszczepbdw.
Wniosek ten moze byé potwierdzony za pomocg eksploratywnej analizy danych
wykonanej na probitach otrzymanych z rozwazanych danych statystycznych.



